Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.803
Filtrar
1.
Bull Exp Biol Med ; 174(4): 509-513, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36899202

RESUMO

We present rapid and sensitive assay of tryptophan hydroxylase 2 enzyme activity based on the fluorescence of the complex of 5-hydroxytryptophan (5-HTP) with o-phthalic aldehyde. This method was compared with the standard method based on chromatographic isolation of 5-HTP followed by its quantification using an electrochemical detector. High sensitivity of the developed fluorometric method and similarity of the results obtained by fluorometric and chromatographic methods were demonstrated. The use of this rapid, cheap, and effective fluorometric method can simplify and facilitate measurements of tryptophan hydroxylase 2 activity and can make this assay available for a wide range of neurochemical and pharmacological laboratories.


Assuntos
5-Hidroxitriptofano , Serotonina , Triptofano Hidroxilase , 5-Hidroxitriptofano/análise , Encéfalo/metabolismo , Fluorometria/métodos , Serotonina/biossíntese , Triptofano Hidroxilase/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902295

RESUMO

The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes , Serotonina , Triptofano Hidroxilase , Animais , Camundongos , Fibroblastos/metabolismo , Serotonina/biossíntese , Triptofano/metabolismo , Triptofano Hidroxilase/metabolismo
3.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008991

RESUMO

Aging is a degenerative process involving cell function deterioration, leading to altered metabolic pathways, increased metabolite diversity, and dysregulated metabolism. Previously, we reported that human placenta-derived mesenchymal stem cells (hPD-MSCs) have therapeutic effects on ovarian aging. This study aimed to identify hPD-MSC therapy-induced responses at the metabolite and protein levels and serum biomarker(s) of aging and/or rejuvenation. We observed weight loss after hPD-MSC therapy. Importantly, insulin-like growth factor-I (IGF-I), known prolongs healthy life spans, were markedly elevated in serum. Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF/MS) analysis identified 176 metabolites, among which the levels of 3-hydroxybutyric acid, glycocholic acid, and taurine, which are associated with health and longevity, were enhanced after hPD-MSC stimulation. Furthermore, after hPD-MSC therapy, the levels of vitamin B6 and its metabolite pyridoxal 5'-phosphate were markedly increased in the serum and liver, respectively. Interestingly, hPD-MSC therapy promoted serotonin production due to increased vitamin B6 metabolism rates. Increased liver serotonin levels after multiple-injection therapy altered the expression of mRNAs and proteins associated with hepatocyte proliferation and mitochondrial biogenesis. Changes in metabolites in circulation after hPD-MSC therapy can be used to identify biomarker(s) of aging and/or rejuvenation. In addition, serotonin is a valuable therapeutic target for reversing aging-associated liver degeneration.


Assuntos
Reprogramação Celular , Metabolismo Energético , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Rejuvenescimento , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Biomarcadores , Proliferação de Células , Feminino , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Modelos Animais , Gravidez , Ratos , Serotonina/biossíntese , Vitamina B 6/metabolismo
4.
Biomed Pharmacother ; 146: 112578, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959121

RESUMO

The mechanism by which acetaminophen produces its analgesic effects is not fully understood. One possible mechanism is the activation of the spinal 5-hydroxytryptamine (5-HT) receptor, although direct evidence of spinal 5-HT release has not yet been reported. N-arachidonoylphenolamine (AM404), a metabolite of acetaminophen, is believed to be the key substance that contributes to the analgesic effects of acetaminophen. In this study, we examined whether acetaminophen and AM404 induce spinal 5-HT release and the mechanism through which spinal 5-HT receptor activation exerts analgesic effects in a rat formalin test in an inflammatory pain model. Spinal 5-HT release was examined by intrathecal microdialysis in conscious and freely moving rats. Acetaminophen was administered orally, and AM404 was administered intracerebroventricularly. In rat formalin tests, oral acetaminophen and intracerebroventricular AM404 induced significant spinal 5-HT release and produced analgesic effects. The analgesic effect of oral acetaminophen was partially antagonized by intrathecal administration of WAY100135 (a 5-HT1A receptor antagonist) and SB269970 (a 5-HT7 receptor antagonist). In contrast, the analgesic effect of intracerebroventricular AM404 was completely antagonized by WAY100135, while SB269970 had no effect. Our data suggest that while oral acetaminophen and intracerebroventricular AM404 activate the spinal 5-HT system, the role of the spinal 5-HT system activated by oral acetaminophen differs from that activated by intracerebroventricular AM404.


Assuntos
Acetaminofen/farmacologia , Analgésicos/farmacologia , Ácidos Araquidônicos/farmacologia , Serotonina/biossíntese , Coluna Vertebral/efeitos dos fármacos , Administração Oral , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley
5.
J Microbiol ; 59(12): 1092-1103, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34865198

RESUMO

As the functions of probiotics within the same species may not be shared, it is important to analyze the genetic characteristics of strains to determine their safety and usefulness before industrial applications. Hence the present study was undertaken to determine functional genes, and beneficial activities of strain LRCC5314, a bacterial strain isolated from kimchi through comparative genomic analysis. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain LRCC5314 was a member of the species L. plantarum. Whole genome size of strain LRCC5314 was sequence was 3.25 Mb long, with a G + C content of 44.5 mol% and 3,031 predicted genes. Strain LRCC5314 could metabolize hexoses through homofermentation, which produces only lactic acid from hexoses. According to gene annotation, strain LRCC-5314 contained genes of EPS production and CRISPR. Moreover, the strain contained genes that could encode a complete biosynthetic pathway for the production of tryptophan, which can be used as a precursor of serotonin. Notably, the tryptophan and serotonin activities strain LRCC5314 were higher than those of reference strains, L. plantarum ATCC 14917T, DSM 20246, DSM 2601, and ATCC 8014, which reach tryptophan amount of 0.784 ± 0.045 µM/ml in MRS broth and serotonin concentration of 19.075 ± 0.295 ng/ml in HT-22 cells. These findings indicated that L. plantarum LRCC5314 could provide a source for serotonin production and could be used as a functional probiotic for stress regulation.


Assuntos
Genes Bacterianos , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Serotonina/biossíntese , Triptofano/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fermentação , Alimentos Fermentados/microbiologia , Genoma Bacteriano , Lactobacillus plantarum/classificação , Lactobacillus plantarum/isolamento & purificação , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Filogenia , Polissacarídeos Bacterianos/biossíntese , Probióticos , Triptofano/biossíntese , Triptofano/genética , Sequenciamento Completo do Genoma
6.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770737

RESUMO

The embryonic ontogeny of pineal secretory activity in birds has been investigated almost exclusively in chickens. This study aimed to characterize this process in domestic geese. The pineal organs of embryos aged 18-28 days were incubated in superfusion culture under different light conditions for 4-5 days and treated with norepinephrine (NE). Melatonin (MLT) was measured by radioimmunoassay and other indoles by HPLC with fluorescence detection. Additionally, pineal organs were collected from embryos at 14-28 days of age and used to measure catecholamines by HPLC with electrochemical detection. MLT secretion increased with embryo age, most intensively between the 22nd and 24th days of life. The daily changes in MLT secretion under the 12 L:12D cycle occurred on the first day of culture, starting from an embryonic age of 24 days. MLT secretion was controlled by the light-dark cycle in all age groups studied. However, exposure to light during the scotophase did not alter the secretion of MLT. The endogenous oscillator expressed its activity in regulating MLT secretion in the pineal organs of embryos aged 24 days and older but could not generate a rhythm after one cycle. The rhythm of 5-hydroxytryptophan release during the first day of culture was found in the pineal organs of all embryos, while the rhythmic release of N-acetylserotonin and 5-methoxyindole acetic acid started at the age of 24 days. The proportion of released indoles changed with embryo age. NE caused a decrease in MLT secretion and provoked an increase in serotonin release. Incubation of the pineal organs induced the development of MLT secretory machinery and its diurnal rhythmicity. The pineal content of catecholamines increased prominently at the end of embryonic development.


Assuntos
Desenvolvimento Embrionário , Gansos , Organogênese , Glândula Pineal/embriologia , 5-Hidroxitriptofano/biossíntese , Animais , Biomarcadores , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Luz , Melatonina/biossíntese , Norepinefrina/farmacologia , Organogênese/genética , Fotoperíodo , Serotonina/análogos & derivados , Serotonina/biossíntese , Técnicas de Cultura de Tecidos
7.
Genes (Basel) ; 12(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34828419

RESUMO

Midbrain raphe nuclei (MRNs) contain a large number of serotonergic neurons associated with the regulation of numerous types of psychoemotional states and physiological processes. The aim of this work was to study alterations of the MRN transcriptome in mice with prolonged positive or negative fighting experience and to identify key gene networks associated with the regulation of serotonergic system functioning. Numerous genes underwent alterations of transcription in the MRNs of male mice that either manifested aggression or experienced social defeat in daily agonistic interactions. The expression of the Tph2 gene encoding the rate-limiting enzyme of the serotonin synthesis pathway correlated with the expression of many genes, 31 of which were common between aggressive and defeated mice and were downregulated in the MRNs of mice of both experimental groups. Among these common differentially expressed genes (DEGs), there were genes associated with behavior, learning, memory, and synaptic signaling. These results suggested that, in the MRNs of the mice, the transcriptome changes associated with serotonergic regulation of various processes are similar between the two groups (aggressive and defeated). In the MRNs, more DEGs correlating with Tph2 expression were found in defeated mice than in the winners, which is probably a consequence of deeper Tph2 downregulation in the losers. It was shown for the first time that, in both groups of experimental mice, the changes in the transcription of genes controlling the synthesis and transport of serotonin directly correlate with the expression of genes Crh and Trh, which control the synthesis of corticotrophin- and thyrotropin-releasing hormones. Our findings indicate that CRH and TRH locally produced in MRNs are related to serotonergic regulation of brain processes during a chronic social conflict.


Assuntos
Agressão , Hormônio Liberador da Corticotropina/metabolismo , Núcleos da Rafe/metabolismo , Serotonina/biossíntese , Derrota Social , Hormônio Liberador de Tireotropina/metabolismo , Animais , Hormônio Liberador da Corticotropina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/genética , Hormônio Liberador de Tireotropina/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
8.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769144

RESUMO

Tryptophan is an essential amino acid whose metabolites play key roles in diverse physiological processes. Due to low reserves in the body, especially under various catabolic conditions, tryptophan deficiency manifests itself rapidly, and both the serotonin and kynurenine pathways of metabolism are clinically significant in critically ill patients. In this review, we highlight these pathways as sources of serotonin and melatonin, which then regulate neurotransmission, influence circadian rhythm, cognitive functions, and the development of delirium. Kynurenines serve important signaling functions in inter-organ communication and modulate endogenous inflammation. Increased plasma kynurenine levels and kynurenine-tryptophan ratios are early indicators for the development of sepsis. They also influence the regulation of skeletal muscle mass and thereby the development of polyneuromyopathy in critically ill patients. The modulation of tryptophan metabolism could help prevent and treat age-related disease with low grade chronic inflammation as well as post intensive care syndrome in all its varied manifestations: cognitive decline (including delirium or dementia), physical impairment (catabolism, protein breakdown, loss of muscle mass and tone), and mental impairment (depression, anxiety or post-traumatic stress disorder).


Assuntos
Estado Terminal , Cinurenina/metabolismo , Triptofano/deficiência , Delírio/etiologia , Depressão/etiologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/metabolismo , Melatonina/biossíntese , Músculo Esquelético/metabolismo , Sepse/metabolismo , Serotonina/biossíntese
9.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681693

RESUMO

Serotonin (Ser) and melatonin (Mel) serve as master regulators of plant growth and development by influencing diverse cellular processes. The enzymes namely, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) catalyse the formation of Ser from tryptophan. Subsequently, serotonin N-acetyl transferase (SNAT) and acetyl-serotonin methyltransferase (ASMT) form Mel from Ser. Plant genomes harbour multiple genes for each of these four enzymes, all of which have not been identified. Therefore, to delineate information regarding these four gene families, we carried out a genome-wide analysis of the genes involved in Ser and Mel biosynthesis in Arabidopsis, tomato, rice and sorghum. Phylogenetic analysis unravelled distinct evolutionary relationships among these genes from different plants. Interestingly, no gene family except ASMTs showed monocot- or dicot-specific clustering of respective proteins. Further, we observed tissue-specific, developmental and stress/hormone-mediated variations in the expression of the four gene families. The light/dark cycle also affected their expression in agreement with our quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Importantly, we found that miRNAs (miR6249a and miR-1846e) regulated the expression of Ser and Mel biosynthesis under light and stress by influencing the expression of OsTDC5 and OsASMT18, respectively. Thus, this study may provide opportunities for functional characterization of suitable target genes of the Ser and Mel pathway to decipher their exact roles in plant physiology.


Assuntos
Acetilserotonina O-Metiltransferasa/genética , Descarboxilases de Aminoácido-L-Aromático/genética , Arilalquilamina N-Acetiltransferase/genética , Sistema Enzimático do Citocromo P-450/genética , Magnoliopsida/metabolismo , Melatonina/biossíntese , Serotonina/biossíntese , Acetilserotonina O-Metiltransferasa/metabolismo , Arabidopsis/metabolismo , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Magnoliopsida/enzimologia , Magnoliopsida/genética , Magnoliopsida/fisiologia , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Sorghum/metabolismo
10.
Cell Host Microbe ; 29(10): 1545-1557.e4, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34525331

RESUMO

Ticks are obligate hematophagous arthropods. Blood feeding ensures that ticks obtain nutrients essential for their survival, development, and reproduction while providing routes for pathogen transmission. However, the effectors that determine tick feeding activities remain poorly understood. Here, we demonstrate that reduced abundance of the symbiont Coxiella (CHI) in Haemaphysalis longicornis decreases blood intake. Providing tetracycline-treated ticks with the CHI-derived tryptophan precursor chorismate, tryptophan, or 5-hydroxytryptamine (5-HT; serotonin) restores the feeding defect. Mechanistically, CHI-derived chorismate increases tick 5-HT biosynthesis by stimulating the expression of aromatic amino acid decarboxylase (AAAD), which catalyzes the decarboxylation of 5-hydroxytryptophan (5-HTP) to 5-HT. The increased level of 5-HT in the synganglion and midgut promotes tick feeding. Inhibition of CHI chorismate biosynthesis by treating the colonized tick with the herbicide glyphosate suppresses blood-feeding behavior. Taken together, our results demonstrate an important function of the endosymbiont Coxiella in the regulation of tick 5-HT biosynthesis and feeding.


Assuntos
Coxiella/fisiologia , Serotonina/biossíntese , Simbiose , Carrapatos/microbiologia , Carrapatos/fisiologia , Animais , Sangue/parasitologia , Comportamento Alimentar , Humanos , Triptofano/metabolismo
11.
Neurochem Int ; 150: 105180, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509561

RESUMO

The identity of the mechanism that controls aggressive behavior in rodents is unclear. Serotonin (5-HT) and GABA are associated with aggressive behavior in rodents. However, the regulatory relationship between these chemicals in the different brain regions of rats has not been fully defined. This study aimed to clarify the role of GABABR1 in DRN-mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Rat models of highly and less aggressive behavior were established through social isolation plus resident intruder. On this basis, GABA content in the DRN and 5-HT contents in the PFC, hypothalamus, hippocampus and DRN were detected using ELISA. Co-expression of 5-HT and GB1 in the DRN was detected by immunofluorescence and immunoelectron microscopy at the tissue and subcellular levels, respectively. GB1-specific agonist baclofen and GB1-specific inhibitor CGP35348 were injected into the DRN by stereotaxic injection. Changes in 5-HT levels in the PFC, hypothalamus and hippocampus were detected afterward. After modeling, rats with highly aggressive behavior exhibited higher aggressive behavior scores, shorter latencies of aggression, and higher total distances in the open field test than rats with less aggressive behavior. The contents of 5-HT in the PFC, hypothalamus and hippocampus of rats with high and low aggressive behavior (no difference between the two groups) were significantly decreased, but the change in GABA content in the DRN was the opposite. GB1 granules could be found on synaptic membranes containing 5-HT granules, which indicated that 5-HT neurons in the DRN co-expressed with GB1, which also occurred in double immunofluorescence results. At the same time, we found that the expression of GB1 in the DRN of rats with high and low aggressive behavior was significantly increased, and the expression of GB1 in the DRN of rats with low aggressive behavior was significantly higher than that in rats with high aggressive behavior. Nevertheless, the expression of 5-HT in DRN was opposite in these two groups. After microinjection of baclofen into the DRN, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group decreased significantly. In contrast, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group increased significantly after injection with CGP35348. The significant increase in GABA in the DRN combined with the significant increase in GB1 in the DRN further mediated the synaptic inhibition effect, which reduced the 5-HT level of 5-HT neurons in the DRN, resulting in a significant decrease in 5-HT levels in the PFC, hypothalamus and hippocampus. Therefore, GB1-mediated GABA regulation of 5-HT levels in the PFC, hypothalamus and hippocampus is one of the mechanisms of highly and less aggressive behavior originating in the DRN. The increased GB1 level in the DRN of LA-behavior rats exhibited a greater degree of change than in the HA-group rats, which indicated that differently decreased 5-HT levels in the DRN may be the internal mechanisms of high and low aggression behaviors.


Assuntos
Agressão/fisiologia , Encéfalo/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Receptores de GABA-B/biossíntese , Serotonina/biossíntese , Ácido gama-Aminobutírico/biossíntese , Agressão/psicologia , Animais , Agonistas dos Receptores de GABA-B/administração & dosagem , Expressão Gênica , Masculino , Microinjeções/métodos , Ratos , Receptores de GABA-B/genética , Serotonina/genética , Isolamento Social/psicologia , Ácido gama-Aminobutírico/genética
12.
J Pharmacol Sci ; 147(3): 251-259, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34507634

RESUMO

The effects of cyclophosphamide on 5-hydroxytryptamine (5-HT) synthesis in the intestinal tissue of rats were investigated. Rats received 120 mg/kg cyclophosphamide intraperitoneally as a single administration, and kaolin and food intake was measured by an automatic monitoring apparatus. Ileal tissues were collected at either 24 or 72 h after administration. Cyclophosphamide caused a significant increase in kaolin intake at the acute and the delayed phases and was associated with a decrease in food intake, and body weight. Cyclophosphamide had no significant effect on intestinal mucosal morphology, or inducible nitric oxide synthase and cyclooxygenase-2 expression in the intestine. Cyclophosphamide significantly increased tryptophan hydroxylase 1 (TPH1) mRNA expression, number of anti-TPH antibody-positive cells, and 5-HT content in the intestine. Cyclophosphamide also significantly increased the expression of Tac1 mRNA, encoding preprotachykinin-1, which is a preprotein of substance P, and the number of anti-substance P antibody-positive cells in the intestine. Cyclophosphamide significantly increased Lgr5, Bmi1, and Atoh1 mRNA levels, which are markers for the proliferation and differentiation of stem cells. This study demonstrated that cyclophosphamide induced pica in rats, and potentiated 5-HT synthesis associated with hyperplasia of substance P-containing enterochromaffin cells without causing severe intestinal injury.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Ciclofosfamida/efeitos adversos , Células Enterocromafins/patologia , Intestinos/metabolismo , Pica/induzido quimicamente , Serotonina/biossíntese , Animais , Peso Corporal/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Ingestão de Alimentos/efeitos dos fármacos , Hiperplasia/metabolismo , Infusões Parenterais , Caulim/administração & dosagem , Masculino , Ratos Wistar , Substância P/metabolismo , Triptofano Hidroxilase/metabolismo
13.
Neurochem Int ; 150: 105185, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555475

RESUMO

Even though the involvement of serotonin (5-hydroxytryptamine; 5-HT) and its receptors in Alzheimer's disease (AD) is widely accepted, data on the expression and the role of 5-HT7 receptors in AD is relatively limited. Therefore, the objective of the present work was to study the expression of serotonergic 5-HT7 receptors in postmortem samples of AD brains and correlate it with neurotransmitter levels, cognition and behavior. The study population consisted of clinically well-characterized and neuropathologically confirmed AD patients (n = 42) and age-matched control subjects (n = 18). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and high-performance liquid chromatography were performed on Brodmann area (BA) 7, BA10, BA22, BA24, hippocampus, amygdala, thalamus and cerebellum to measure mRNA levels of 5-HT7 receptors (HTR7), as well as the concentrations of various monoamine neurotransmitters and their metabolites. Decreased levels of HTR7 mRNA were observed in BA10. A significant association was observed between HTR7 levels in BA10 and BEHAVE-AD cluster B (hallucinations) (rs(28) = 0.444, P < 0.05). In addition, a negative correlation was observed between HTR7 levels in BA10 and both MHPG concentrations in this brain region (rs(45) = -0.311; P < 0.05), and DOPAC levels in the amygdala (rs(42) = -0.311; P < 0.05). Quite surprisingly, no association was found between HTR7 levels and cognitive status. Altogether, this study supports the notion of the involvement of 5-HT7 receptors in psychotic symptoms in AD, suggesting the interest of testing antagonist acting at this receptor to specifically treat psychotic symptoms in this illness.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Receptores de Serotonina/biossíntese , Serotonina/biossíntese , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Química Encefálica/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Serotonina/análise , Receptores de Serotonina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Serotonina/análise , Serotonina/genética
14.
Life Sci ; 283: 119872, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352261

RESUMO

The interaction of Toxoplasma gondii with the gastrointestinal tract of its host is highly regulated. Once ingested, the parasite crosses the epithelium without altering the permeability of the intestinal barrier. Nevertheless, many studies report alterations ranging from structural to functional damage in cells and tissues that make up the wall of the small and large intestine. Although the immune response to the parasite has been extensively studied, the role of serotonin (5-HT) in toxoplasmosis is poorly understood. Here we investigate the distribution of cells expressing 5-HT and its effects on cells and tissues of the jejunal wall of rats after 2, 3, or 7 days of T. gondii infection. KEY RESULTS: Our results show that transposition of the jejunal epithelium by T. gondii leads to ruptures in the basement membrane and activation of the immune system, as confirmed by the decrease in laminin immunostaining and the increase in the number of mast cells, respectively. CONCLUSIONS AND INFERENCES: We showed an increase in the number of enterochromaffin cells and mast cells expressing 5-HT in the jejunal wall. We also observed that the percentage of serotonergic mast cells increased in the total population. Thus, we can suggest that oral infection by T. gondii oocysts preferentially activates non-neuronal cells expressing 5-HT. Together, these results may explain both the changes in the extracellular matrix and the morphology of the enteric ganglia.


Assuntos
Células Enterocromafins , Jejuno , Oocistos/metabolismo , Serotonina/biossíntese , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Doença Aguda , Animais , Células Enterocromafins/metabolismo , Células Enterocromafins/parasitologia , Jejuno/metabolismo , Jejuno/parasitologia , Masculino , Ratos , Ratos Wistar
15.
PLoS One ; 16(8): e0255687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34379673

RESUMO

Identifying the fundamental molecular factors that drive weight gain even in the absence of hypercaloric food intake, is crucial to enable development of novel treatments for the global pandemic of obesity. Here we investigated both adipose tissue-specific and systemic events that underlie the physiological weight gain occurring during early adulthood in mice fed a normocaloric diet. In addition, we used three different genetic models to identify molecular factors that promote physiological weight gain during normocaloric and hypercaloric diets. We demonstrated that normal physiological weight gain was accompanied by an increase in adipose tissue mass and the presence of cellular and metabolic signatures typically found during obesity, including adipocyte hypertrophy, macrophage recruitment into visceral fat and perturbed glucose metabolism. At the molecular level, this was associated with an increase in adipose tissue tryptophan hydroxylase 1 (Tph1) transcripts, the key enzyme responsible for the synthesis of peripheral serotonin. Genetic inactivation of Tph1 was sufficient to limit adipose tissue expansion and associated metabolic alterations. Mechanistically, we discovered that Tph1 inactivation resulted in down-regulation of cyclin-dependent kinase inhibitor p21Waf1/Cip1 expression. Single or double ablation of Tph1 and p21 were equally effective in preventing adipocyte expansion and systemic perturbation of glucose metabolism, upon both normocaloric and hypercaloric diets. Our results suggest that serotonin and p21 act as a central molecular determinant of weight gain and associated metabolic alterations, and highlights the potential of targeting these molecules as a pharmacologic approach to prevent the development of obesity.


Assuntos
Tecido Adiposo/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dieta Saudável/métodos , Deleção de Genes , Obesidade/metabolismo , Serotonina/biossíntese , Transdução de Sinais/genética , Adipócitos/patologia , Animais , Tamanho Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Dieta Hiperlipídica , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Aumento de Peso/genética
16.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063611

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) plays two important roles in humans-one central and the other peripheral-depending on the location of the 5-HT pools of on either side of the blood-brain barrier. In the central nervous system it acts as a neurotransmitter, controlling such brain functions as autonomic neural activity, stress response, body temperature, sleep, mood and appetite. This role is very important in intensive care, as in critically ill patients multiple serotoninergic agents like opioids, antiemetics and antidepressants are frequently used. High serotonin levels lead to altered mental status, deliria, rigidity and myoclonus, together recognized as serotonin syndrome. In its role as a peripheral hormone, serotonin is unique in controlling the functions of several organs. In the gastrointestinal tract it is important for regulating motor and secretory functions. Apart from intestinal motility, energy metabolism is regulated by both central and peripheral serotonin signaling. It also has fundamental effects on hemostasis, vascular tone, heart rate, respiratory drive, cell growth and immunity. Serotonin regulates almost all immune cells in response to inflammation, following the activation of platelets.


Assuntos
Estado Terminal , Inflamação/metabolismo , Síndrome da Serotonina/metabolismo , Serotonina/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Delírio/metabolismo , Delírio/patologia , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Inflamação/patologia , Mioclonia/metabolismo , Mioclonia/patologia , Serotonina/biossíntese , Síndrome da Serotonina/patologia
17.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070942

RESUMO

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Assuntos
Arginina/farmacologia , Ácido Gástrico/metabolismo , Células Parietais Gástricas/efeitos dos fármacos , Prótons , Serotonina/biossíntese , Linhagem Celular Tumoral , Fenclonina/farmacologia , Expressão Gênica , Granisetron/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Células Parietais Gástricas/citologia , Células Parietais Gástricas/metabolismo , Inibidores de Proteases/farmacologia , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Estômago/citologia , Estômago/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Triptofano Hidroxilase/antagonistas & inibidores , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
18.
FASEB J ; 35(6): e21648, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33993565

RESUMO

Serotonin is an important signaling molecule in the periphery and in the brain. The hydroxylation of tryptophan is the first and rate-limiting step of its synthesis. In most vertebrates, two enzymes have been described to catalyze this step, tryptophan hydroxylase (TPH) 1 and 2, with expression localized to peripheral and neuronal cells, respectively. However, animals lacking both TPH isoforms still exhibit about 10% of normal serotonin levels in the blood demanding an additional source of the monoamine. In this study, we provide evidence by the gain and loss of function approaches in in vitro and in vivo systems, including stable-isotope tracing in mice, that phenylalanine hydroxylase (PAH) is a third TPH in mammals. PAH contributes to serotonin levels in the blood, and may be important as a local source of serotonin in organs in which no other TPHs are expressed, such as liver and kidney.


Assuntos
Encéfalo/metabolismo , Hepatócitos/metabolismo , Serotonina/biossíntese , Triptofano Hidroxilase/metabolismo , Animais , Encéfalo/citologia , Hepatócitos/citologia , Camundongos
19.
Acta Histochem ; 123(4): 151715, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33940317

RESUMO

Ulcerative colitis is a chronic inflammatory condition of the gastrointestinal tract that can affect people of worldwide. In contrast with Crohn's disease, that can relate the entire thickness of the bowel wall, the inflammation of ulcerative colitis is limited to the colonic mucosa. Immune cells including activated T cells, plasma cells, mast cells, macrophages, and dendritic cells (DCs) trigger the inflammation. Furthermore, dendritic cells are antigen presenting cells involved in maintaining intestinal immune homeostasis. It has been described an increment of number in DCs colonic mucosa of patients with ulcerative colitis. The immune cells such as antigen-presenting cells can act as autocrine or paracrine modulators. Recent studies showed that dendritic cells synthetized and released classical neurotransmitters as glutamate, dopamine, acetylcholine, and serotonin. Paraformaldehyde-fixed intestinal tissues, obtained from the stricture sites of ten patients with ulcerative colitis were analyzed by immunostaining for Langerin/CD207, serotonin and vesicular acetylcholine transporter. As controls, unaffected (normal) portions of five patients were also investigated. Aim of this study was to characterize for the first time the human gut dendritic cells of ulcerative colitis patients, with Langerin/CD207 that is a c-type lectin expressed by different types of DCs and to colocalize in the same cells the expression of serotonin and vesicular acetylcholine transporter, showing the link between dendritic cells, gut enterochromaffin cells or autonomic nerves in immune activation and generation of intestinal inflammation.


Assuntos
Colite Ulcerativa/metabolismo , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Serotonina/biossíntese , Proteínas Vesiculares de Transporte de Acetilcolina/biossíntese , Adolescente , Adulto , Colite Ulcerativa/patologia , Células Dendríticas/patologia , Feminino , Humanos , Masculino
20.
Food Funct ; 12(8): 3597-3610, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900345

RESUMO

Akkermansia muciniphila is a probiotic inhabiting host intestinal mucus layers and displays evident easing or therapeutic effects on host enteritis and metabolic disorders such as obesity and diabetes. The outer membrane protein Amuc_1100 of A. muciniphila is likely to play a crucial role during the interaction with the host. 5-HT is a neurotransmitter and a key signal molecule regulating the gastrointestinal tract functions and other organs, which is involved in diverse physiological and pathological processes. This study demonstrated that Amuc_1100 could promote the expression of the 5-HT synthesis rate-limiting enzyme Tph1 in RIN-14B cells and reduce the expression of the serotonin reuptake transporter (SERT) in Caco-2 cells through direct interaction with TLR2, thereby improving 5-HT biosynthesis and extracellular availability. Using antibiotic-treated mice as animal models, we found that after gavage with A. muciniphila or Amuc_1100, Tph1 expression increased and SERT expression decreased in colon tissues. The 5-HT concentrations in colon tissues and blood were markedly elevated simultaneously. We also found that A. muciniphila or Amuc_1100 improved the gastrointestinal motility function and restored gut microbiota abundance and species diversity in antibiotic-treated mice. These results suggest that A. muciniphila can regulate the host intestinal 5-HT system via its outer membrane protein Amuc_1100 and TLR2. This mechanism represented an important approach through which A. muciniphila interacts with the host and further influences 5-HT-related physiological functions. These results advance the understanding of interplay mechanisms between the gut microbiota and the host, which could be the basis for new intervention strategies for related diseases.


Assuntos
Akkermansia/fisiologia , Proteínas da Membrana Bacteriana Externa/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestinos/efeitos dos fármacos , Serotonina/biossíntese , Receptor 2 Toll-Like/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/farmacologia , Células CACO-2 , Linhagem Celular , Células Enterocromafins/efeitos dos fármacos , Células Enterocromafins/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...